
WINTERSEMESTER 2015/16 - NICHTLINEARE PARTIELLE
DIFFERENTIALGLEICHUNGEN

Homework #4 Key

Problem 1. An alternative proof of Lemma 2.5.2. Prove the following statement. The
number iη is an eigenvalue of K1(ξ) if and only if detPm(ξ, η) = 0. Here ξ ∈ Rd−1 \ {0}.
Hint: Use the fact that there must exist an eigenvector w ∈ CmN and exploit the equation
K1(ξ)w = iηw. Recall that

K1(ξ) =



0 |ξ|IN 0 . . . . . . 0
0 0 |ξ|IN . . . . . . 0
...

...
. . . . . .

...
...

...
. . . . . .

...
0 0 0 |ξ|IN
Ẽ1 Ẽ2 Ẽ3 . . . . . . Ẽm


with Ẽj = −Ãj−1|ξ|j−m ,

where Ãj(ξ) denotes the principal part of Aj(ξ), and that

P (D) =
∂m

∂ym
+

m−1∑
j=0

Aj(Dx)
∂j

∂yj
,

where Aj is a tangential operator of order m− j and Pm(ξ, η) = (iη)m+
∑m−1

j=0 Ãj(ξ)(iη)j.

Proof. Suppose that ξ ∈ Rd−1 is a non-zero vector. Note that in the case m = 1 there is
nothing to prove. In this case the principal symbol is

P1(ξ, η) = iη − Ã0(ξ) = iη − Ẽ1 = iη −K1(ξ) ,

which shows that detP (ξ, η) = 0 is equivalent to iη being an eigenvalue of K1(ξ). So in
what follows we assume m > 1 which is the interesting case.

Suppose iη is a eigenvalue of the matrix K1(ξ). Then there exists a non-zero vector
w ∈ CNm such that iηw = K1(ξ)w. Matching the block structure of K1(ξ) we write

w =


w1

w2
...
wm

 , wj ∈ CN for j = 1, 2, ...,m

and from the formula for K1(ξ) we conclude that
(1)

iηwj = |ξ|wj+1 for j = 1, 2, ...,m− 1, and iηwm =
m∑
k=1

Ẽkwk = −
m∑
k=1

Ãk−1|ξ|k−mwk .

Note that η = 0 implies wj = 0 for j = 1, 2, ...,m− 1 is equivalent to Ã0wm = 0 which in
turn is equivalent to detPm(ξ, 0) = 0. This proves the statement in the case iη = 0. Now
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assume that iη 6= 0 which implies that wj 6= 0 for all j = 1, 2, ...,m. Define u = w1/|ξ|m−1
which is a non-zero vector in CN . This gives

(2) wj = (iη)j−1|ξ|m−ju , for j = 1, ...,m

Then, the second equation in (1) can be rewritten as

(3) (iη)mu+
m−1∑
j=0

Ãj(ξ)(iη)ju = 0

which show that u is a solution to the equation Pm(ξ, η)u = 0 and thus detPm(ξ, η) = 0.
Conversely, if detPm(ξ, η) = 0 there exists a non-zero vector u such that equation (3)

is true. Then one defines a vector w ∈ CN with the ”blocks” defined by formula (2). This
vector satisfies formula (1) and hence, the vector w 6= 0 must be an eigenvector of K1(ξ)
with eigenvalue iη. �

Problem 2. The Dunford-Taylor integral. The goal is to prove formula (2.5.2) for the
spectral projection of the matrix K1(ξ). Let A be a square matrix and suppose that its
spectrum (eigenvalues) σ(A) ⊂ ω where ω is open, bounded in C with a smooth boundary
γ. Let f be a holomorphic function on a neighborhood of ω and introduce the complex
line integral

f(A) =
1

2πi

∫
γ

f(ζ)(ζI − A)−1dζ .

Here I denotes the identity matrix which is of the same type as A.

a.) Show that, if f(z) = 1, then f(A) = I and that, if f(z) = z, then f(A) = A.

Proof. Note that in both cases the curve can be deformed to a large circle with radius R
such that

(ζI − A)−1 =
1

ζ
(I − A/ζ)−1 =

1

ζ

∞∑
k=0

Ak

ζk
for |ζ| = R ,

where the series is absolutely (i.e. in norm) convergent. If f(z) = 1, then

1

2πi

∫
|ζ|=R

(ζI − A)−1 dζ =
1

2πi

∫
|ζ|=R

1

ζ

∞∑
k=0

Ak

ζk
dζ .

Since the series is absolutely convergent, the summation and integration can be inter-
changed. All integrals of the form ∫

|ζ|=R
ζkdζ

vanish, except for k = −1. In that case the integral is equal to one.
The case f(z) = z is similar. One obtains the integral

1

2πi

∫
|ζ|=R

ζ(ζI − A)−1 dζ =
1

2πi

∫
|ζ|=R

∞∑
k=0

Ak

ζk
dζ = A ,

where the last equal sign follows with the same reasoning as in the case f(z) = 1. �
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b.) Suppose now that ω = ω+ ∪ ω− where

ω+ ⊂ {z ∈ C : <z > 0}, and ω− ⊂ {z ∈ C : <z < 0}

such that ω+ ∩ ω− = ∅ and set

E+ =
1

2πi

∫
γ+

(ζI − A)−1dζ, and E− =
1

2πi

∫
γ−

(ζI − A)−1dζ ,

where γ± = ∂ω±. Using the fact that (fg)(A) = f(A)g(A) for holomorphic functions f
and g defined on a neighborhood of ω, prove that

E+ + E− = I, E2
+ = E+, E2

− = E−, E+E− = E−E+ = 0 .

This shows that E+ and E− are complementary projections.
The formula (fg)(A) = f(A)g(A) may be familiar from Linear Algebra or Functional
Analysis. If not, do not worry, just use it

Proof. Choose f to be holomorphic on ω such that f(z) = 1 on ω+ and f(z) = 0 on ω−
and set g(z) = 1− f(z) which is also holomorphic on ω. Then

E+ =
1

2πi

∫
∂ω

f(z)(ζI − A)−1dζ and E− =
1

2πi

∫
∂ω

g(z)(ζI − A)−1dζ

Since f(z)g(z) = 0 in ω we have E+E− = E−E+ = 0 and since f(z)2 = f(z) in ω we have
E2

+ = E+. Likewise one obtains E2
− = E−. Finally, f(z) + g(z) = 1 in ω which implies

that E+ + E− = I. �

Problem 3. From the proof of Theorem 2.3.3 recall the operator

R(x,D) = χλ(x)[P (x,D)− P (λ,D)] = χλ
∑
|α|≤m

[aα(x)− aα(λ)]Dα

where χλ is a partition of unity subordinate to the lattice Oε = εZd = {εj : j ∈ Zd}, that
is 0 ≤ χλ ≤ 1, χλ ∈ C∞0 (Rd),

∑
λ∈Oε

χλ(x) ≡ 1, and suppχλ ⊂ {x ∈ Rd : |x − λ| ≤ ε}.
Note that the operator R depends also on ε > 0.

a.) Prove the estimate (which is part of the Proof of Theorem 2.3.3)∥∥∥∥∥∑
λ∈Oε

Rλ(x,D)u

∥∥∥∥∥
Hk(Rd)

≤ C(k)ε‖u‖Hm+k(Rd) + C(ε, k)‖u‖Hm+k−1(Rd)

for all u ∈ Hm+k(Rd) with suppu ⊂ V ⊂⊂ Ω. Here k is a non-negative integer and it
is important that the first constant in the estimate does not depend on ε whereas the
second constant will depend on ε.

Proof. Since the coefficients are in C∞(Ω), we know that the aα are Lipschitz continuous,
that is there exists a constant L such that

|aα(x)− aα(λ)| ≤ Lε
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for all x ∈ suppχλ ∩ Ω, |α| ≤ m, and λ ∈ O ∩ Ω where ε > 0. Compute now by mean of
the product rule and the triangle inequality

(4)

∥∥∥∥∥∑
λ∈Oε

Rλ(x,D)u

∥∥∥∥∥
2

Hk(Rd)

=
∑
|β|≤k

∥∥∥∥∥∥Dβ

∑
λ∈Oε

χλ
∑
|α|≤m

[aα(x)− aα(λ)]Dαu

∥∥∥∥∥∥
2

L2(Rd)

≤ C
∑
|β|≤k

∑
λ∈Oε

∑
|α|≤m

∫
Rd

χ2
λ|aα(x)− aα(λ)|2|Dα+βu|2dx+ C(ε, k)‖u‖2Hk+m−1(Rd)

Now one makes use of the Lipschitz continuity of the coefficients and the fact that∑
λ∈Oε

χ2
λ < 1

∑
λ∈Oε

χλ = 1

which allows to estimate the first term on the right-hand side in (4) by Cε2‖u‖2
Hk+m(Rd)

.

Note that the proof implies that the estimate∑
λ∈Oε

‖Rλ(x,D)u‖Hk(Rd) ≤ C(k)ε‖u‖Hm+k(Rd) + C(ε, k)‖u‖Hm+k−1(Rd)

is also true. This will be of significance in the proof of part b. �

b.) Recall the operators Eλ(D) introduced in the proof of Theorem 2.3.3. (and discussed
in the Homework #3) and prove the estimate

(5)

∥∥∥∥∥∑
λ∈Oε

Eλ(D)Rλ(x,D)u

∥∥∥∥∥
Hm(Rd)

≤ Cε‖u‖Hm(Rd) + C(ε)‖u‖Hm−1(Rd) .

for all u ∈ Hm+k(Rd) with suppu ⊂ V ⊂⊂ Ω. Observe that the constant in front of the
second term on the right-hand side in (4) vanishes for k = 0.

Proof. From Homework #3 we know that

‖Eλ(D)v‖Hm(Rd ≤ C‖v‖L2(Rd) .

with a constant independent of ε, for all λ ∈ Oε ∩ Ω. Hence, by the triangle inequality∥∥∥∥∥∑
λ∈Oε

Eλ(D)Rλ(x,D)u

∥∥∥∥∥
Hm(Rd)

≤
∑
λ∈Oε

‖Eλ(D)Rλ(x,D)u‖Hm(Rd) ≤ C
∑
λ∈Oε

‖Rλ(x,D)u‖L2(Rd)

By the proof of part a.) we know that the last term can be estimate by Cε‖u‖Hm(Rd) which
shows that the desired inequality is true even without the second term on the right-hand
side. �


