WINTERSEMESTER 2015/16 - NICHTLINEARE PARTIELLE
DIFFERENTIALGLEICHUNGEN

Homework #4 Key

Problem 1. An alternative proof of Lemma 2.5.2. Prove the following statement. The
number i7 is an eigenvalue of K;(¢) if and only if det P,,(£,m) = 0. Here £ € R1\ {0}.
Hint: Use the fact that there must exist an eigenvector w € C™" and exploit the equation
K, (&)w = inw. Recall that
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where Aj (¢) denotes the principal part of A;(¢), and that
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where A; is a tangential operator of order m — j and P,,(£,1) = (in)™ +>_7", YA€) (in).

Proof. Suppose that & € R%"! is a non-zero vector. Note that in the case m = 1 there is
nothing to prove. In this case the principal symbol is

Pi(&,m) = in— Ay(€) = in — By = in — K1(€),

which shows that det P(£,n) = 0 is equivalent to in being an eigenvalue of K;(§). So in
what follows we assume m > 1 which is the interesting case.

Suppose in is a eigenvalue of the matrix K;(£). Then there exists a non-zero vector
w € CN™ such that inw = K;(£)w. Matching the block structure of K;(£) we write

wq
W9 .
w= | . , ijCNforjzl,Q,...,m

W

and from the formula for K;(§) we conclude that

(1) ~ -
inw; = [glwjer for j=1,2,.om =1, and inw, =Y By ==Y A

Note that 7 = 0 implies w; = 0 for j = 1,2,...,m — 1 is equivalent to Ayw,, = 0 which in
turn is equivalent to det P,,(£,0) = 0. This proves the statement in the case in = 0. Now
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assume that in # 0 which implies that w; # 0 for all j = 1,2, ..., m. Define u = w; /|¢|™!
which is a non-zero vector in CV. This gives

(2) wy = (in)’ " u,  for j=1,..,m

Then, the second equation in (1) can be rewritten as
-1 ~
(3) ()™u+ Y Ai(€)(in)'u=0
J
which show that u is a solution to the equation P,,(§,n)u = 0 and thus det P,,(£,7n) = 0.
Conversely, if det P,,,(£,17) = 0 there exists a non-zero vector u such that equation (3)
is true. Then one defines a vector w € CV with the "blocks” defined by formula (2). This
vector satisfies formula (1) and hence, the vector w # 0 must be an eigenvector of K;(&)
with eigenvalue 7). O
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Problem 2. The Dunford-Taylor integral. The goal is to prove formula (2.5.2) for the
spectral projection of the matrix K;(§). Let A be a square matrix and suppose that its
spectrum (eigenvalues) o(A) C w where w is open, bounded in C with a smooth boundary
~v. Let f be a holomorphic function on a neighborhood of w and introduce the complex
line integral

£ = 5 [ 5O - 2y 1ag.

Here I denotes the identity matrix which is of the same type as A.
a.) Show that, if f(z) =1, then f(A) = I and that, if f(z) = z, then f(A) = A.

Proof. Note that in both cases the curve can be deformed to a large circle with radius R
such that

(CI—A)" =1 = A/ CZ for [¢| =

J\IH

where the series is absolutely

—~

i.e. in norm) convergent. If f(z) =1, then
1 1 1 o A*

— (CI - A)~'d¢ = / el il
270 Jicl=r 2mi Jigi- RCZ ¢

Since the series is absolutely convergent, the summation and integration can be inter-

changed. All integrals of the form
| ¢
I<l=R

vanish, except for £ = —1. In that case the integral is equal to one.
The case f(z) = z is similar. One obtains the integral

1 A”C
27i C(Cr =) 27rz/< Z

I¢|=R I<I=R k=0

where the last equal sign follows with the same reasoning as in the case f(z) = 1. U



b.) Suppose now that w = w, Uw_ where
wy C{z€C : Rz>0}, and w_ C{zeC : RNz<0}

such that @, Nw_ = @ and set
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FE
= 27rz
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(CI A)7td¢, and E_:i, (¢l — At ,
"

where 71 = Jwy. Using the fact that (fg)(A) = f(A)g(A) for holomorphic functions f
and ¢ defined on a neighborhood of w, prove that

E,+E_ =1 E>=E. E>=E., E,E.=E_E,=0.

This shows that £, and E_ are complementary projections.
The formula (fg)(A) = f(A)g(A) may be familiar from Linear Algebra or Functional
Analysis. If not, do not worry, just use it

Proof. Choose f to be holomorphic on w such that f(z) =1 on w; and f(z) =0 on w_
and set g(z) =1 — f(z) which is also holomorphic on w. Then
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f( YT —A)'d¢ and E_= 1 ) g(2)(CT — A)'dC

Since f(2)g(2) =0 inw we have B, E_ = E_F, = 0 and since f(z)> = f(z) in w we have
E? = E.. Likewise one obtains £? = E_. Finally, f(z) + g(z) = 1 in w which implies
that £, + E_ = 1. O

Problem 3. From the proof of Theorem 2.3.3 recall the operator

R(x, D) = xa(z)[P(x, D) — =xx Y [aa(x) = aa(N)]D

la|<m

where Y is a partition of unity subordinate to the lattice &, = eZ¢ = {cj : j € Z%}, that
is 0 < xx <1, xa € C(RY), > eo. Xa(r) =1, and suppxa C {7 € Re : |z — A < e}
Note that the operator R depends also on € > O.

a.) Prove the estimate (which is part of the Proof of Theorem 2.3.3)

Z Ry(z,D)u

< C(R)elul| grnsrqgay + C (&, k)|l s oy

Hk(R4)

for all u € H™™(RY) with suppu C V CC Q. Here k is a non-negative integer and it
is important that the first constant in the estimate does not depend on € whereas the
second constant will depend on «.

Proof. Since the coefficients are in C*(€2), we know that the a, are Lipschitz continuous,
that is there exists a constant L such that

|aa(z) — ag(N)| < Le
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for all x € supp xa NQ, |a] < m, and A € & N Q where ¢ > 0. Compute now by mean of
the product rule and the triangle inequality

Z Ry(z,D)u = Z D? Z X Z o () — ag(N)] D%

AEOD: HE(Rd) 1BI<k AEO: |a|<m

2

Lo (R%)
<CY Y [ loale) = auWFID P ufde + e, R ulfponses
|8|1<k AEO |a|<m
Now one makes use of the Lipschitz continuity of the coefficients and the fact that
2 G <1) n=l
AeO: AEO:
which allows to estimate the first term on the right-hand side in (4) by Ce?||ul|%,... (R4)-
Note that the proof implies that the estimate
Z | Rx(z, D)ul| grray < C(k)el|ul| gmsrgay + C (€, k)|l grm+r-1(ra)
AEO:
is also true. This will be of significance in the proof of part b. 0

b.) Recall the operators Ey(D) introduced in the proof of Theorem 2.3.3. (and discussed
in the Homework #3) and prove the estimate

(5) > Ex(D)Ri(z, D)u

ANED,

< Cellul| gmray + C(e)|ull gm-1(ray -
Hm (RD)
for all u € H™(R?) with suppu C V CC Q. Observe that the constant in front of the
second term on the right-hand side in (4) vanishes for k£ = 0.

Proof. From Homework #3 we know that

[EX(D)v|| zrmee < Cl|v]|Lymey -
with a constant independent of ¢, for all A € . N ). Hence, by the triangle inequality

> " Ex(D)Ri(x, D)u

AEO:

<> EAD)Ra(x, D)ul ey < C Y || Ra(z, D) ey

Hm(Rd) ANEO, NEO,:

By the proof of part a.) we know that the last term can be estimate by Ce||u|| gymgay which
shows that the desired inequality is true even without the second term on the right-hand
side. 0



