## WINTERSEMESTER 2015/16 - NICHTLINEARE PARTIELLE DIFFERENTIALGLEICHUNGEN

## Homework \#4 Key

Problem 1. An alternative proof of Lemma 2.5.2. Prove the following statement. The number $i \eta$ is an eigenvalue of $K_{1}(\xi)$ if and only if $\operatorname{det} P_{m}(\xi, \eta)=0$. Here $\xi \in \mathbb{R}^{d-1} \backslash\{0\}$. Hint: Use the fact that there must exist an eigenvector $w \in \mathbb{C}^{m N}$ and exploit the equation $K_{1}(\xi) w=i \eta w$. Recall that

$$
K_{1}(\xi)=\left[\begin{array}{cccccc}
0 & |\xi| I_{N} & 0 & \cdots & \ldots & 0 \\
0 & 0 & |\xi| I_{N} & \cdots & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & & \vdots \\
\vdots & \vdots & & \ddots & \ddots & \vdots \\
0 & 0 & 0 & & & |\xi| I_{N} \\
\tilde{E}_{1} & \tilde{E}_{2} & \tilde{E}_{3} & \ldots & \ldots & \tilde{E}_{m}
\end{array}\right] \quad \text { with } \quad \tilde{E}_{j}=-\tilde{A}_{j-1}|\xi|^{j-m}
$$

where $\tilde{A}_{j}(\xi)$ denotes the principal part of $A_{j}(\xi)$, and that

$$
P(D)=\frac{\partial^{m}}{\partial y^{m}}+\sum_{j=0}^{m-1} A_{j}\left(D_{x}\right) \frac{\partial^{j}}{\partial y^{j}},
$$

where $A_{j}$ is a tangential operator of order $m-j$ and $P_{m}(\xi, \eta)=(i \eta)^{m}+\sum_{j=0}^{m-1} \tilde{A}_{j}(\xi)(i \eta)^{j}$.
Proof. Suppose that $\xi \in \mathbb{R}^{d-1}$ is a non-zero vector. Note that in the case $m=1$ there is nothing to prove. In this case the principal symbol is

$$
P_{1}(\xi, \eta)=i \eta-\tilde{A}_{0}(\xi)=i \eta-\tilde{E}_{1}=i \eta-K_{1}(\xi),
$$

which shows that $\operatorname{det} P(\xi, \eta)=0$ is equivalent to $i \eta$ being an eigenvalue of $K_{1}(\xi)$. So in what follows we assume $m>1$ which is the interesting case.

Suppose $i \eta$ is a eigenvalue of the matrix $K_{1}(\xi)$. Then there exists a non-zero vector $w \in \mathbb{C}^{N m}$ such that $i \eta w=K_{1}(\xi) w$. Matching the block structure of $K_{1}(\xi)$ we write

$$
w=\left[\begin{array}{c}
w_{1} \\
w_{2} \\
\vdots \\
w_{m}
\end{array}\right], \quad w_{j} \in \mathbb{C}^{N} \text { for } j=1,2, \ldots, m
$$

and from the formula for $K_{1}(\xi)$ we conclude that
$i \eta w_{j}=|\xi| w_{j+1}$ for $j=1,2, \ldots, m-1, \quad$ and $\quad i \eta w_{m}=\sum_{k=1}^{m} \tilde{E}_{k} w_{k}=-\sum_{k=1}^{m} \tilde{A}_{k-1}|\xi|^{k-m} w_{k}$.
Note that $\eta=0$ implies $w_{j}=0$ for $j=1,2, \ldots, m-1$ is equivalent to $\tilde{A}_{0} w_{m}=0$ which in turn is equivalent to $\operatorname{det} P_{m}(\xi, 0)=0$. This proves the statement in the case $i \eta=0$. Now
assume that $i \eta \neq 0$ which implies that $w_{j} \neq 0$ for all $j=1,2, \ldots, m$. Define $u=w_{1} /|\xi|^{m-1}$ which is a non-zero vector in $\mathbb{C}^{N}$. This gives

$$
\begin{equation*}
w_{j}=(i \eta)^{j-1}|\xi|^{m-j} u, \quad \text { for } j=1, \ldots, m \tag{2}
\end{equation*}
$$

Then, the second equation in (1) can be rewritten as

$$
\begin{equation*}
(i \eta)^{m} u+\sum_{j=0}^{m-1} \tilde{A}_{j}(\xi)(i \eta)^{j} u=0 \tag{3}
\end{equation*}
$$

which show that $u$ is a solution to the equation $P_{m}(\xi, \eta) u=0$ and thus $\operatorname{det} P_{m}(\xi, \eta)=0$.
Conversely, if $\operatorname{det} P_{m}(\xi, \eta)=0$ there exists a non-zero vector $u$ such that equation (3) is true. Then one defines a vector $w \in \mathbb{C}^{N}$ with the "blocks" defined by formula (2). This vector satisfies formula (1) and hence, the vector $w \neq 0$ must be an eigenvector of $K_{1}(\xi)$ with eigenvalue $i \eta$.

Problem 2. The Dunford-Taylor integral. The goal is to prove formula (2.5.2) for the spectral projection of the matrix $K_{1}(\xi)$. Let $A$ be a square matrix and suppose that its spectrum (eigenvalues) $\sigma(A) \subset \omega$ where $\omega$ is open, bounded in $\mathbb{C}$ with a smooth boundary $\gamma$. Let $f$ be a holomorphic function on a neighborhood of $\omega$ and introduce the complex line integral

$$
f(A)=\frac{1}{2 \pi i} \int_{\gamma} f(\zeta)(\zeta I-A)^{-1} d \zeta
$$

Here $I$ denotes the identity matrix which is of the same type as $A$.
a.) Show that, if $f(z)=1$, then $f(A)=I$ and that, if $f(z)=z$, then $f(A)=A$.

Proof. Note that in both cases the curve can be deformed to a large circle with radius $R$ such that

$$
(\zeta I-A)^{-1}=\frac{1}{\zeta}(I-A / \zeta)^{-1}=\frac{1}{\zeta} \sum_{k=0}^{\infty} \frac{A^{k}}{\zeta^{k}} \quad \text { for }|\zeta|=R,
$$

where the series is absolutely (i.e. in norm) convergent. If $f(z)=1$, then

$$
\frac{1}{2 \pi i} \int_{|\zeta|=R}(\zeta I-A)^{-1} d \zeta=\frac{1}{2 \pi i} \int_{|\zeta|=R} \frac{1}{\zeta} \sum_{k=0}^{\infty} \frac{A^{k}}{\zeta^{k}} d \zeta
$$

Since the series is absolutely convergent, the summation and integration can be interchanged. All integrals of the form

$$
\int_{|\zeta|=R} \zeta^{k} d \zeta
$$

vanish, except for $k=-1$. In that case the integral is equal to one.
The case $f(z)=z$ is similar. One obtains the integral

$$
\frac{1}{2 \pi i} \int_{|\zeta|=R} \zeta(\zeta I-A)^{-1} d \zeta=\frac{1}{2 \pi i} \int_{|\zeta|=R} \sum_{k=0}^{\infty} \frac{A^{k}}{\zeta^{k}} d \zeta=A,
$$

where the last equal sign follows with the same reasoning as in the case $f(z)=1$.
b.) Suppose now that $\omega=\omega_{+} \cup \omega_{-}$where

$$
\omega_{+} \subset\{z \in \mathbb{C}: \Re z>0\}, \quad \text { and } \quad \omega_{-} \subset\{z \in \mathbb{C}: \Re z<0\}
$$

such that $\bar{\omega}_{+} \cap \bar{\omega}_{-}=\emptyset$ and set

$$
E_{+}=\frac{1}{2 \pi i} \int_{\gamma_{+}}(\zeta I-A)^{-1} d \zeta, \quad \text { and } \quad E_{-}=\frac{1}{2 \pi i} \int_{\gamma_{-}}(\zeta I-A)^{-1} d \zeta
$$

where $\gamma_{ \pm}=\partial \omega_{ \pm}$. Using the fact that $(f g)(A)=f(A) g(A)$ for holomorphic functions $f$ and $g$ defined on a neighborhood of $\omega$, prove that

$$
E_{+}+E_{-}=I, \quad E_{+}^{2}=E_{+}, \quad E_{-}^{2}=E_{-}, \quad E_{+} E_{-}=E_{-} E_{+}=0
$$

This shows that $E_{+}$and $E_{-}$are complementary projections.
The formula $(f g)(A)=f(A) g(A)$ may be familiar from Linear Algebra or Functional Analysis. If not, do not worry, just use it

Proof. Choose $f$ to be holomorphic on $\omega$ such that $f(z)=1$ on $\omega_{+}$and $f(z)=0$ on $\omega_{-}$ and set $g(z)=1-f(z)$ which is also holomorphic on $\omega$. Then

$$
E_{+}=\frac{1}{2 \pi i} \int_{\partial \omega} f(z)(\zeta I-A)^{-1} d \zeta \quad \text { and } \quad E_{-}=\frac{1}{2 \pi i} \int_{\partial \omega} g(z)(\zeta I-A)^{-1} d \zeta
$$

Since $f(z) g(z)=0$ in $\omega$ we have $E_{+} E_{-}=E_{-} E_{+}=0$ and since $f(z)^{2}=f(z)$ in $\omega$ we have $E_{+}^{2}=E_{+}$. Likewise one obtains $E_{-}^{2}=E_{-}$. Finally, $f(z)+g(z)=1$ in $\omega$ which implies that $E_{+}+E_{-}=I$.

Problem 3. From the proof of Theorem 2.3.3 recall the operator

$$
R(x, D)=\chi_{\lambda}(x)[P(x, D)-P(\lambda, D)]=\chi_{\lambda} \sum_{|\alpha| \leq m}\left[a_{\alpha}(x)-a_{\alpha}(\lambda)\right] D^{\alpha}
$$

where $\chi_{\lambda}$ is a partition of unity subordinate to the lattice $\mathscr{O}_{\varepsilon}=\varepsilon \mathbb{Z}^{d}=\left\{\varepsilon j: j \in \mathbb{Z}^{d}\right\}$, that is $0 \leq \chi_{\lambda} \leq 1, \chi_{\lambda} \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right), \sum_{\lambda \in \mathscr{O}_{\varepsilon}} \chi_{\lambda}(x) \equiv 1$, and $\operatorname{supp} \chi_{\lambda} \subset\left\{x \in \mathbb{R}^{d}:|x-\lambda| \leq \varepsilon\right\}$. Note that the operator $R$ depends also on $\varepsilon>0$.
a.) Prove the estimate (which is part of the Proof of Theorem 2.3.3)

$$
\left\|\sum_{\lambda \in \mathscr{\theta}_{\varepsilon}} R_{\lambda}(x, D) u\right\|_{H^{k}\left(\mathbb{R}^{d}\right)} \leq C(k) \varepsilon\|u\|_{H^{m+k}\left(\mathbb{R}^{d}\right)}+C(\varepsilon, k)\|u\|_{H^{m+k-1}\left(\mathbb{R}^{d}\right)}
$$

for all $u \in H^{m+k}\left(\mathbb{R}^{d}\right)$ with $\operatorname{supp} u \subset V \subset \subset \Omega$. Here $k$ is a non-negative integer and it is important that the first constant in the estimate does not depend on $\varepsilon$ whereas the second constant will depend on $\varepsilon$.

Proof. Since the coefficients are in $C^{\infty}(\bar{\Omega})$, we know that the $a_{\alpha}$ are Lipschitz continuous, that is there exists a constant $L$ such that

$$
\left|a_{\alpha}(x)-a_{\alpha}(\lambda)\right| \leq L \varepsilon
$$

for all $x \in \operatorname{supp} \chi_{\lambda} \cap \bar{\Omega},|\alpha| \leq m$, and $\lambda \in \mathscr{O} \cap \Omega$ where $\varepsilon>0$. Compute now by mean of the product rule and the triangle inequality

$$
\begin{align*}
& \left\|\sum_{\lambda \in \mathscr{O}_{\varepsilon}} R_{\lambda}(x, D) u\right\|_{H^{k}\left(\mathbb{R}^{d}\right)}^{2}=\sum_{|\beta| \leq k}\left\|D^{\beta}\left[\sum_{\lambda \in \sigma_{\varepsilon}} \chi_{\lambda} \sum_{|\alpha| \leq m}\left[a_{\alpha}(x)-a_{\alpha}(\lambda)\right] D^{\alpha} u\right]\right\|_{L_{2}\left(\mathbb{R}^{d}\right)}^{2}  \tag{4}\\
& \quad \leq C \sum_{|\beta| \leq k} \sum_{\lambda \in \sigma_{\varepsilon}} \sum_{|\alpha| \leq m} \int_{\mathbb{R}^{d}} \chi_{\lambda}^{2}\left|a_{\alpha}(x)-a_{\alpha}(\lambda)\right|^{2}\left|D^{\alpha+\beta} u\right|^{2} d x+C(\varepsilon, k)\|u\|_{H^{k+m-1}\left(\mathbb{R}^{d}\right)}^{2}
\end{align*}
$$

Now one makes use of the Lipschitz continuity of the coefficients and the fact that

$$
\sum_{\lambda \in \mathscr{O}_{\varepsilon}} \chi_{\lambda}^{2}<1 \sum_{\lambda \in \mathscr{O}_{\varepsilon}} \chi_{\lambda}=1
$$

which allows to estimate the first term on the right-hand side in (4) by $C \varepsilon^{2}\|u\|_{H^{k+m}\left(\mathbb{R}^{d}\right)}^{2}$. Note that the proof implies that the estimate

$$
\sum_{\lambda \in \sigma_{\varepsilon}}\left\|R_{\lambda}(x, D) u\right\|_{H^{k}\left(\mathbb{R}^{d}\right)} \leq C(k) \varepsilon\|u\|_{H^{m+k}\left(\mathbb{R}^{d}\right)}+C(\varepsilon, k)\|u\|_{H^{m+k-1}\left(\mathbb{R}^{d}\right)}
$$

is also true. This will be of significance in the proof of part b .
b.) Recall the operators $E_{\lambda}(D)$ introduced in the proof of Theorem 2.3.3. (and discussed in the Homework \#3) and prove the estimate

$$
\begin{equation*}
\left\|\sum_{\lambda \in \mathscr{O}_{\varepsilon}} E_{\lambda}(D) R_{\lambda}(x, D) u\right\|_{H^{m}\left(\mathbb{R}^{d}\right)} \leq C \varepsilon\|u\|_{H^{m}\left(\mathbb{R}^{d}\right)}+C(\varepsilon)\|u\|_{H^{m-1}\left(\mathbb{R}^{d}\right)} \tag{5}
\end{equation*}
$$

for all $u \in H^{m+k}\left(\mathbb{R}^{d}\right)$ with $\operatorname{supp} u \subset V \subset \subset \Omega$. Observe that the constant in front of the second term on the right-hand side in (4) vanishes for $k=0$.
Proof. From Homework \#3 we know that

$$
\left\|E_{\lambda}(D) v\right\|_{H^{m}\left(\mathbb{R}^{d}\right.} \leq C\|v\|_{L_{2}\left(\mathbb{R}^{d}\right)}
$$

with a constant independent of $\varepsilon$, for all $\lambda \in \mathscr{O}_{\varepsilon} \cap \Omega$. Hence, by the triangle inequality

$$
\left\|\sum_{\lambda \in \mathscr{O}_{\varepsilon}} E_{\lambda}(D) R_{\lambda}(x, D) u\right\|_{H^{m}\left(\mathbb{R}^{d}\right)} \leq \sum_{\lambda \in \mathscr{O}_{\varepsilon}}\left\|E_{\lambda}(D) R_{\lambda}(x, D) u\right\|_{H^{m}\left(\mathbb{R}^{d}\right)} \leq C \sum_{\lambda \in \mathscr{O}_{\varepsilon}}\left\|R_{\lambda}(x, D) u\right\|_{L_{2}\left(\mathbb{R}^{d}\right)}
$$

By the proof of part a.) we know that the last term can be estimate by $C \varepsilon\|u\|_{H^{m}\left(\mathbb{R}^{d}\right)}$ which shows that the desired inequality is true even without the second term on the right-hand side.

